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The palladium(0)-catalyzed Suzuki cross-coupling reaction of the bis(triflates) of phenyl 1,4-dihydroxy-
2-naphthoate afforded various 1,4-diaryl-2-naphthoates. The reactions proceeded with very good site-
selectivity. Due to electronic reasons, the first attack occurred at the sterically more hindered position
C-1.

� 2010 Elsevier Ltd. All rights reserved.
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Functionalized naphthalene derivatives are of considerable
pharmacological relevance and occur in a number of natural prod-
ucts. This includes, for example, 1,4-dihydroxy-2-naphthoates
(e.g., the antitumor agent rhinacanthin N),1 4-aryl-2-naphthoates
(e.g., eritrichin and globoidnan A),2 and naphthyl-tetrahydroiso-
quinolines (e.g., the dioncophyllines C and michellamines) which
show a very good activity against malaria or various cancer cell
lines.3

Site-selective palladium-catalyzed reactions of polyhalogenated
substrates are of considerable current interest.4 The site-selectivity
is influenced by electronic and steric parameters.5 Palladium-cata-
lyzed reactions of aromatic bis(triflates) have been previously re-
ported. In most reactions reported to date there was no issue of
site-selectivity.6 Hosokawa et al. reported a site-selective Sonogash-
ira reaction of a bis(triflate) prepared from a 1,3-dihydroxybenzene
derivative.7 Recently, we have observed that Suzuki–Miyaura (S–M)
reactions of the bis(triflate) of methyl 2,5-dihydroxybenzoate pro-
ceed with very good site-selectivity in favour of position 5 which
is presumably a result of steric effects.8 It occurred to us that the
site-selectivity might be different for benzoates and their naphtho-
ate analogues, due to electronic reasons. We chose phenyl 1,4-
dihydroxynaphthoate as a commercially available and inexpensive
starting material. The latter can be regarded as a benzo-annulated
analogue of methyl 2,5-dihydroxybenzoate. Transition metal-cata-
lyzed cross-coupling reactions of this or related naphthoate deriva-
tives (including the corresponding dihalides) have, to the best of our
knowledge, not been reported to date. We have found that indeed a
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change of the site-selectivity is observed and the results of our stud-
ies are reported herein.

Phenyl 1,4-dihydroxynaphthoate (1) was transformed into the
novel bis(triflate) 2 in 83% yield (Scheme 1).9

The S-M reaction of 2 with boronic acids 3a–e (2.4 equiv) affor-
ded the novel 1,4-diaryl-2-naphthoates 4a–e in 61–85% yields
(Scheme 2, Table 1). The best yields were obtained when Pd(PPh3)4

(3 mol %) was used as the catalyst, when 2.4 equiv of the boronic
acid was employed, and when the reaction was carried out in
1,4-dioxane (110 �C, 8 h) using K3PO4 as the base.10,11 The use of
Pd(OAc)2 in the presence of XPhos12 or SPhos12 proved to be less
efficient in terms of yield. The yields of the products 4a,b, derived
from arylboronic acids containing electron-withdrawing substitu-
ents, were higher than the yields of 4d,e derived from electron-rich
boronic acids.

The Suzuki reaction of 2 with boronic acids 3e–i (1.1 equiv), in
the presence of Pd(PPh3)4 (3 mol %), proceeded with very good site-
selectivity at carbon atom C-1 and afforded the 1-aryl-4-(trif-
luoromethylsulfonyloxy)-2-naphthoates 5a–e (Scheme 3, Table
2).10,13 The products were isolated in pure form after chromatogra-
phy. A small amount of the bis-coupled product could be detected
OTfOH
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Scheme 1. Synthesis of 2. Reagents and conditions: (i): 1) 1 (1.0 equiv), pyridine
(4.0 equiv), CH2Cl2, �78 �C, 10 min; 2) Tf2O (2.4 equiv), �78 to 0 �C, 4 h.
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Scheme 2. Synthesis of 4a–e. Reagents and conditions: (i), 2 (1.0 equiv), 3a–e
(2.4 equiv), K3PO4 (3.0 equiv), Pd(PPh3)4 (3 mol %), 1,4-dioxane, 110 �C, 8 h.

Table 1
Synthesis of 4a–e

3,4 Ar %a (4)

a 3-FC6H4 85
b 4-(CF3)C6H4 80
c 4-MeC6H4 76
d 3-(MeO)C6H4 65
e 2-(EtO)C6H4 61

a Yields of isolated products.
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Scheme 3. Synthesis of 5a–e. Reagents and conditions: (i): 2 (1.0 equiv), 3e–i
(1.1 equiv), K3PO4 (1.5 equiv), Pd(PPh3)4 (3 mol %), 1,4-dioxane, 95 �C, 8 h.

Table 2
Synthesis of 5a–e

5 3 Ar %a (5)

a e 2-(EtO)C6H4 59
b f 2,4-(MeO)2C6H3 66
c g 2,6-(MeO)2C6H3 33
d h 4-ClC6H4 73
e i 4-tBuC6H4 71

a Yields of isolated products.

Table 3
Synthesis of 6a–d

6 3 Ar1 Ar2 %a (6)

a j,k 4-FC6H4 3,4-(MeO)2C6H3 54
b f,c 2,4-(MeO)2C6H3 4-MeC6H4 63
c b,k 4-(CF3)C6H4 3,4-(MeO)2C6H3 51
d l,m 4-(H2C@CH)C6H4 4-(MeO)C6H3 67

a Yields of isolated products.
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by 1H NMR and GC–MS in the crude material before the purifica-
tion. All products were isolated in good yields (except for 5c which
is derived from the sterically hindered 2,6-disubstituted arylbo-
ronic acid 3g). During the optimization it proved to be important
to employ only a slight excess of the arylboronic acid (1.1 equiv)
and to carry out the reaction at 95 �C instead of 110 �C to avoid
double coupling.

The one-pot reaction of 2 with two different arylboronic acids,
which were sequentially added, afforded the unsymmetrical 1,4-
diaryl-2-naphthoates 6a–d in 51–67% yields (Scheme 4, Table
3).14,15 During the optimization it proved to be important, for the
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Scheme 4. Synthesis of 6a–d. Reagents and conditions: (1) 2 (1.0 equiv), 3b,f,j,l
(1.1 equiv), K3PO4 (1.5 equiv), Pd(PPh3)4 (3 mol %), 1,4-dioxane, 95 �C, 7 h; (2)
3c,k,m (1.3 equiv), K3PO4 (1.5 equiv), 110 �C, 8 h.
first step of the one-pot protocol, to employ only a slight excess
of the arylboronic acid (1.1 equiv) and to carry out the reaction
at 95 �C instead of 110 �C.

The structures of all products were proved by 2D NMR experi-
ments (NOESY, HMBC). The structures of 5c and 6c were indepen-
dently confirmed by X-ray crystal structure analyses (Figs. 1
and 2).16

The S-M reaction of methyl 2,5-bis(trifluoromethylsulfonyl-
oxy)benzoate 7 occurs first at the sterically less hindered carbon
atom C-5. In contrast, naphthoate 2 is first attacked at the sterically
more hindered position C-1. This might be explained by electronic
effects (Scheme 5). The oxidative addition of the electron-rich pal-
ladium species usually occurs first at the most electron deficient
carbon atom.4 In case of 7, carbon atom C-2 is more electron defi-
cient than C-5, due to its location ortho to the ester group. For
naphthoate 2, carbon atom C-1 is also more electron deficient than
C-4, but this difference is more pronounced than for benzoate 7.
The nonsubstituted benzene moiety of naphthoate 2 represents a
stable 6p aromatic system. In contrast, the aromaticity of the other
benzene moiety of 2 is considerably disturbed, because of the pres-
ence of the ester and the triflate groups. The aromaticity of the
substituted benzene moiety should be more disturbed than the
aromaticity of the benzene moiety of 7. The substituted benzene
moiety of 2 might thus be regarded as a cross-conjugated diene
Figure 1. Crystal structure of 5c.



Figure 2. Crystal structure of 6c.
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Scheme 5. Possible explanation for the site-selective reactions of 2.
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Scheme 6. Diene character of 2.
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system (Scheme 6). Due to the p-acceptor effect of the ester group,
the nucleophilic attack occurs at carbon atom C-1 of the diene sys-
tem (conjugate addition).

In conclusion, we have reported site-selective Suzuki–Miyaura
reactions of the bis(triflate) of phenyl 1,4-dihydroxynaphthoate.
The first attack occurred at the sterically more hindered position
C-1.
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